Targeting DNA mismatches with rhodium intercalators functionalized with a cell-penetrating peptide.

نویسندگان

  • Jens Brunner
  • Jacqueline K Barton
چکیده

Cell-penetrating peptides are widely used to deliver cargo molecules into cells. Here we describe the synthesis, characterization, DNA binding, and cellular uptake studies of a series of metal-peptide conjugates containing oligoarginine as a cell-penetrating peptide. d-Octaarginine units are appended onto a rhodium intercalator containing the sterically expansive chrysenequinone diimine (chrysi) ligand to form Rh(chrysi)(phen)(bpy)(3+)-tethered oligoarginine conjugates, where the peptide is attached to the ancillary bpy ligand; some conjugates also include a fluorescein or thiazole orange tag. These complexes bind and with photoactivation selectively cleave DNA neighboring single-base mismatches. The presence of the oligoarginines is found to increase the nonspecific binding affinity of the complexes for both matched and mismatched DNA, but for these conjugates, photocleavage remains selective for the mismatched site, as assayed using both gel electrophoresis and mass spectrometry experiments. Significantly, the rhodium complex does not interfere with the delivery properties of the cell-penetrating peptide. Confocal microscopy experiments show rapid nuclear localization of the metal-peptide conjugates containing the tethered fluorescein. Mass spectrometry experiments confirm the association of the rhodium with the HeLa cells. These results provide a strategy for targeting mismatch-selective metal complexes inside cell nuclei.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA mismatch-specific targeting and hypersensitivity of mismatch-repair-deficient cells to bulky rhodium(III) intercalators.

Mismatch repair (MMR) is critical to maintaining the integrity of the genome, and deficiencies in MMR are correlated with cancerous transformations. Bulky rhodium intercalators target DNA base mismatches with high specificity. Here we describe the application of bulky rhodium intercalators to inhibit cellular proliferation differentially in MMR-deficient cells compared with cells that are MMR-p...

متن کامل

Evaluation of Cell Penetrating Peptide Delivery System on HPV16E7 Expression in Three Types of Cell Line

Background: The poor permeability of the plasma and nuclear membranes to DNA plasmids are two major barriers for the development of these therapeutic molecules. Therefore, success in gene therapy approaches depends on the development of efficient and safe non-viral delivery systems. Objectives: The aim of this study was to investigate the in vitro delivery of plasmid DNA encoding HPV16 E7 gene...

متن کامل

Cell-selective biological activity of rhodium metalloinsertors correlates with subcellular localization.

Deficiencies in the mismatch repair (MMR) pathway are associated with several types of cancers, as well as resistance to commonly used chemotherapeutics. Rhodium metalloinsertors have been found to bind DNA mismatches with high affinity and specificity in vitro, and also exhibit cell-selective cytotoxicity, targeting MMR-deficient cells over MMR-proficient cells. Ten distinct metalloinsertors w...

متن کامل

Biological effects of simple changes in functionality on rhodium metalloinsertors.

DNA mismatch repair (MMR) is crucial to ensuring the fidelity of the genome. The inability to correct single base mismatches leads to elevated mutation rates and carcinogenesis. Using metalloinsertors-bulky metal complexes that bind with high specificity to mismatched sites in the DNA duplex-our laboratory has adopted a new chemotherapeutic strategy through the selective targeting of MMR-defici...

متن کامل

DNA hydrolysis and oxidative cleavage by metal-binding peptides tethered to rhodium intercalators.

With the goal of developing artificial nucleases for DNA hydrolysis, metal-coordinating peptides have been tethered to a DNA-intercalating rhodium complex to deliver metal ions to the sugar-phosphate backbone. The intercalator, [Rh(phi)(2)bpy']Cl(3) [phi = 9,10-phenanthrenequinone diimine; bpy' = 4-(butyric acid)-4'-methyl-2,2'-bipyridine], provides DNA binding affinity, and a metal-binding pep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 45 40  شماره 

صفحات  -

تاریخ انتشار 2006